
Heidi Gebauer Juraj Hromkovič Lucia Keller
Ivana Kosírová Giovanni Serafini Björn Steffen

Programming in LOGO

Programming in LOGO

The content of this script is taken from the textbook Einführung in die Programmierung
mit LOGO, lectures 1–7. The complete textbook consists of a total of 15 lectures and
contains many additional exercises and explanations, as well as comments for teachers.

Juraj Hromkovič. Einführung in die Programmierung mit LOGO: Lehr-
buch für Unterricht und Selbststudium, 2. Aufl., Springer Vieweg 2012.
ISBN: 978-3-8348-1852-2.

Version 3.0, February 26, 2014, SVN-Rev: 13903

Translation in English: Sandro Feuz
Redaction: Hans-Joachim Böckenhauer, Ivana Kosírová

Programming environment

The examples and exercises in the script are designed for the XLogo programming
environment, which can be freely obtained from the website xlogo.tuxfamily.org.

For the examples to work properly, the language within XLogo has to be set to English.

Rights of use

The ABZ provides the presented material free of charge for internal usage and educational
purposes by teachers and educational institutions.

ABZ

The Center for Informatics Education (ABZ) of ETH Zurich supports schools and teachers,
who would like to establish or expand educational activities in the area of computer
science. The support ranges from individual consultation and on-site teaching by ETH
professors and the ABZ team, to training courses for teachers and maintenance of course
material.

www.abz.inf.ethz.ch

1 Basic Instructions

A command is an instruction, which the computer can understand and execute. In
principle, the computer only understands very basic commands, which can then be
combined to form more complicated instructions. Such a sequence of commands is called
a computer program. Writing computer programs is not easy. There are programs
which consist of millions of commands. To keep track of such a complicated program, it
is very important to approach the task of writing a program in a structured and well
thought out manner. This is what we will learn in this programming course.

Drawing Straight Lines

The command forward 100 or fd 100 moves the turtle 100 steps forward:

100

With the command back 100 or bk 100, you can move the turtle backwards by
100 steps:

100

3

Clearing and Restarting

The command cs clears the entire screen and moves the turtle to its initial starting
position.

Turning

The turtle always moves in the direction it currently faces.

Using the commands right 90 or rt 90, you can turn the turtle 90° to the right. This
corresponds to a quarter circle:

90◦

The command right 180 or rt 180 turns the turtle 180° to the right. This corresponds
to a half-turn:

180◦

right 270 or rt 270 turns the turtle 270° to the right:

270◦

4

The commands right 360 and rt 360 turn the turtle 360° to the right. This corresponds
to a whole turn:

360◦

Using the commands left 90 or lt 90, the turtle turns 90° to the left:

90◦

Note that the directions of the turns are interpreted from the point of view of the turtle,
illustrated by the following example using the command rt 90:

90◦

Programming

To program means writing multiple commands in sequence.

5

Exercise 1

Copy and execute the following program:
fd 100
rt 90
fd 150
rt 90
fd 50
lt 90
fd 150
rt 90
fd 50

Did you get the following image?

fd 100

rt 90 fd 150 rt 90

fd 50

lt 90

fd 150 rt 90

fd 50

Exercise 2
Copy the following program and execute it:

fd 100
rt 90
fd 200
rt 90
fd 80
rt 90
fd 100
rt 90
fd 50

10

Draw the resulting picture in the given grid and mark which command has drawn
each section of the image (just as we did in Exercise 1).

6

Exercise 3
Write a program for each of the following images. For all images, you can choose
the starting position of the turtle.

200

200

(a)

100

50 100 50

100

50 100 50

100

(b)

You can choose the size.

(c)

100 100

100

100

(d)

Exercise 4
Write a program that produces the following image:

50

50

Can you rewrite your program so that it only uses the commands fd 50 and rt 90?

Exercise 5
Anna would like to draw the following image. Can you help her?

50

50

50

50

7

2 The Command repeat

When we want to draw a square with sides of length 100,

we can do this with the following program:
fd 100
rt 90
fd 100
rt 90
fd 100
rt 90
fd 100
rt 90

We note that the two commands
fd 100
rt 90

are repeated four times. Wouldn’t it be much simpler to tell the computer that it should
just repeat these two commands four times instead of writing them four times in a row?

We can do exactly this with the following:

repeat 4 [fd 100 rt 90]

Command
to repeat
a program

Number of
repetitions

Sequence of commands
to be repeated

8

Exercise 6
Copy and execute the following program:
fd 75 lt 90
fd 75 lt 90
fd 75 lt 90
fd 75 lt 90

What image does the program draw? Can you use the command repeat to shorten
the program?

Exercise 7
Copy the following program and find out what it produces:
fd 50 rt 60
fd 50 rt 60
fd 50 rt 60
fd 50 rt 60
fd 50 rt 60
fd 50 rt 60

Shorten the program by using the command repeat.

Exercise 8
Use the command repeat to write a program that draws a square having sides of
length 200.

Exercise 9
Copy the following program:
fd 100 rt 120
fd 100 rt 120
fd 100 rt 120

What is the result if you execute the program? Use the command repeat to shorten
the program.

9

We are interested in drawing the following image using the command repeat:

50

50

Prior to actually drawing, we have to think about what the repetitive pattern is. For
example, we could use the following image as the repetitive pattern:

50

50

This image can be drawn with the following program. It assumes that we are starting in
the lower left corner:
fd 50 bk 50 rt 90 fd 50

After executing the program, the turtle is positioned in the lower right corner facing
right:

50

50

All we have to do now is get the turtle to face upwards, so that we can draw the image
one more time. We can use the command lt 90 to accomplish that.

Let us execute the whole program to check the progress we made so far:
fd 50 bk 50 rt 90 fd 50
lt 50

We get the desired result:

If we now execute the program once again, we will get the following:

So, we see that our idea works and we can now repeat the program 6 times:

repeat 6 [fd 50 bk 50 rt 90 fd 50︸ ︷︷ ︸
pattern

lt 90︸ ︷︷ ︸
orienting

]

10

Many of the exercises can be solved with this approach. Always remember that you
should first find the repetitive pattern. Then you write one program to draw the pattern
and another program to orientate the turtle so that it faces the correct direction for the
next repetition of the pattern. The structure of your final program should then look as
follows:

repeat Number of repetitions [pattern orienting]

Exercise 10
Drawing staircases.

(a) Draw a staircase consisting of 10 steps of size 20 each.

20
20

• First find the repetitive pattern and write a program drawing it.

• Think about how to write a program that makes the turtle face the correct
direction for the next repetition of the pattern.

• Put together both programs to solve the task.

(b) Draw a staircase with 5 steps of size 50 each.

(c) Draw a staircase with 20 steps of size 10 each.

11

Exercise 11
We are now going to draw stars.

(a) Draw the following star.

150

45◦

(b) The star has eight rays, each of length 150. Can you draw a star with 16 rays
of length 100?

Exercise 12
Draw the following pictures with a program:

(a)
20

20

(b)

30
30

Exercise 13

Draw the following picture with a program:

100

100

12

Exercise 14
Copy and execute the following program:
repeat 4 [fd 100 rt 90]
rt 90
repeat 4 [fd 100 rt 90]
rt 90
repeat 4 [fd 100 rt 90]
rt 90
repeat 4 [fd 100 rt 90]
rt 90

What does it draw? Can you make this program even shorter?

Walking Mode

Our turtle is usually in the pen mode. This means the turtle has a pen attached to it
and, whenever it moves, a line is drawn.

In the walking mode, however, the turtle moves without drawing. You can switch to
the walking mode using the following command:

penup or pu for short.

To switch back to pen mode, we use the following command:

pendown or pd for short.

Exercise 15

Draw the following image with a program:

100

100

Exercise 16

Write a program that draws the following image:

40

30

40

13

3 Naming and Calling Programs

We can give a name to each program we have written so far. If we then write the name
of the program in the command line, the program gets executed.

The program to draw a square with sides of length 100 is:
repeat 4 [fd 100 rt 90]

We can name this program SQUARE100 in the following way:
to SQUARE100
repeat 4 [fd 100 rt 90]
end

We have written the same program twice. Once with and once without giving it a
name.

To write a program with a name, we have to use the editor. Such programs will be
indicated by a gray box. As soon as we are finished writing the program, we have to
click on the button with the turtle to close the editor.

Everyone can choose their own name for the program. We have chosen SQUARE100,
because we wanted to indicate that the program draws a square with sides of length 100.
The only restrictions on the name are that it consists only of letters and digits, and that
it is only one word (it must not contain any spaces).

After having written the program, nothing will be drawn yet. We have only named the
program, but we have not executed it yet. If we now type the name
SQUARE100

into the command line, then the program repeat 4 [fd 100 rt 90] gets executed. The
screen will show:

14

Let us go back to Exercise 12(a). We could simplify the solution by first writing a
program for the repetitive pattern, a square with sides of length 20, and giving this
program an appropriate name:
to SQUARE20
repeat 4 [fd 20 rt 90]
end

After drawing SQUARE20, the turtle is located in the lower left corner of the square:

To draw the next square, we have to move the turtle to the lower right corner. We can
do that with the following program:
rt 90 fd 20 lt 90

We label this program as well:
to POSITION20
rt 90 fd 20 lt 90
end

Using those two programs we can write a program for Exercise 12(a) as follows:
repeat 10 [SQUARE20 POSITION20]

We can then label the resulting program as well. For example:
to ROW10
repeat 10 [SQUARE20 POSITION20]
end

The programs SQUARE20 and POSITION20 are called subprograms of program ROW10.

Exercise 17

Write a program to solve Exercise 12(b) that uses a subprogram to draw a square
with sides of length 30. Your final program should look as follows:
repeat 4 [SQUARE30 POSITION30]

Hence, you have to figure out the subprograms SQUARE30 and POSITION30.

15

Exercise 18
Use program SQUARE100 as a subprogram to draw the image from Exercise 13.

Exercise 19
Write a program that draws a step

20

20

and use it as a subprogram to solve Exercise 10(a).

Exercise 20

Find another solution to Exercise 11(a) using the following program as a subprogram:
to LINE
fd 150 bk 150
end

Exercise 21
Write the following program in the editor:
to RAY
fd 100 bk 200 fd 100
end

Use the program RAY as a subprogram of a program STAR6 to draw the following
image:

100

60◦

16

Exercise 22
Solve Exercise 15 and Exercise 16 once again using subprograms.

Exercise 23
We have already written the program ROW10. What does the following program do?
ROW10 fd 20 lt 90 fd 200 rt 90

Test your idea using the computer.

Exercise 24
Write a program that draws the following image:

Exercise 25
Drawing squares of different sizes.

(a) Write a program that draws a square with sides of length 50 and name it
SQUARE50. Execute your program to check whether it works as intended.

(b) Write a program that draws a square with sides of length 75.

(c) Execute the program
SQUARE50
SQUARE75
SQUARE100

What does the resulting image look like?

(d) How could you change the above program to add three even bigger squares?

17

Building Houses

In the following, we want to help an architect building a housing complex. To keep the
construction as easy as possible, he is planning to build all the houses in the same way.
We propose the following house design:
to HOUSE
rt 90
repeat 4 [fd 50 rt 90]
lt 60 fd 50 rt 120 fd 50 lt 150
end

This program draws the following house:

Exercise 26

Where does the turtle start drawing the house? Think about the path the turtle
takes when drawing the house using the program HOUSE. Where is the turtle located
at the end of the execution? Draw the image and describe the effect of each command
the same way we did in Exercise 1.

The architect builds the house according to our program and is satisfied with the result.
Therefore, he wants to use the program to build a whole block of houses. The final block
should look as follows:

Since all the houses look the same, he can use the program HOUSE 5 times without having
to think about the design of each house. He lets the turtle draw the left-most house and
then tells it to move to the starting point for the second house:

The architect does this using the program:
HOUSE rt 90 pu fd 50 lt 90 pd

18

Being positioned correctly, the turtle can now draw another house in the same way and
move to the starting point of the next house. The process should be repeated until all
five houses have been drawn. That is, we have to repeat the above program five times to
get a row with five houses. The resulting program will be called HOUSEROW:
to HOUSEROW
repeat 5 [HOUSE rt 90 pu fd 50 lt 90 pd]
end

At the end of the execution, the turtle is located at the spot where the next house could
be drawn:

Exercise 27

At this point we would like to extend the housing complex by additional streets.
Use the program HOUSEROW as a building block to draw the following image:

Hint: After completion of a row, the turtle has to be moved to the correct position
for building the next row.

19

Thick Lines and Black Squares

Exercise 28

Drawing thick lines using the program THICK.
Label the following program with the name THICK
fd 100
rt 90
fd 1
rt 90
fd 100
rt 180

and then write in the command line
THICK

What does the turtle draw? Use a pencil to draw how the image was formed.

Exercise 29
Repeat program THICK 100 times using the following commands
repeat 100 [THICK]

What does the resulting image look like?

Exercise 30
In this exercise we will be drawing thick lines. In Exercise 28, we have already seen
that a thick line can be drawn as follows:
to THICK40
fd 40
rt 90
fd 1
rt 90
fd 40
rt 180
end

fd 40

fd 1

fd 40

rt 90 rt 90

rt 180

Two normal lines are drawn so close together that they appear to be one thick line.

Copy the program THICK40 and try it out.

20

Exercise 31
A thick line of length 40 can also be seen as rectangle of width 1 and length 40.
After an execution of THICK40 the turtle faces up. Executing the program one more
time will therefore repaint the second line. We get a rectangle of width 2 and length
40. Each additional execution adds one line. When repeating THICK40 40 times, we
get a square with sides of length 40. Try it out by repeating THICK40 40 times.

Write a program named BLACK40, which draws a black square in this way with sides
of length 40.

Exercise 32
Draw the following image using the program BLACK40:

40

40 40

Exercise 33
Use the program BLACK40 to draw the following image:

Exercise 34
Draw the following image:

21

Exercise 35
Write a program that draws the following image:

Exercise 36
The architect decides to order the roof for the houses from another vendor. That is,
he gets two types of building blocks: One called ROOF and another one called BASE.
Write two programs to draw the two building blocks. Combine those programs to
form a new program HOUSE1 that draws a house.

Exercise 37
The houses in Exercise 27 are very simple. Try to be creative and come up with a
new design for a house. Use your house to build a whole building complex.

22

4 Regular Polygons and Circles

Regular Polygons

A regular k-gon is a polygon with k corners and k sides of equal length. To draw a
regular 10-gon by pencil, you have to draw 10 lines and after every line, you need to turn
(change the direction) “a little bit”.

How much do we need to turn?

When drawing a regular polygon, we turn the turtle multiple times but at the very end
it always reaches its starting point and faces its initial direction.

This means that, while drawing, it has been rotated by a full 360°. When we draw a
regular 10-gon, we turn exactly ten times and each time by the same angle. The angle
by which we turn therefore:

360°
10 = 36°

Thus we need to turn the turtle by 36° degrees each time: rt 36. Let us try this out by
writing the following program:

repeat 10 [fd 50︸ ︷︷ ︸
side length

rt 36︸ ︷︷ ︸
turning by 36°

]

23

Exercise 38
Draw the following regular polygons:

(a) a regular 5-gon with sides of length 180,

(b) a regular 12-gon with sides of length 50,

(c) a regular 4-gon with sides of length 200,

(d) a regular 6-gon with sides of length 100,

(e) a regular 3-gon with sides of length 200,

(f) a regular 18-gon with sides of length 20.

When drawing a regular 7-gon, we encounter the problem that 360 is not divisible by 7
without a remainder. In those cases, we let the computer calculate the result for us by
writing
360/7

(“/” tells the computer to “divide”). The computer then figures out the result. We can
therefore draw a regular 7-gon with sides of length 100 as:
repeat 7 [fd 100 rt 360/7]

Try it out.

Drawing Circles

We cannot draw exact circles by only using fd und rt. You might have noticed, however,
that a regular polygon with a lot of corners almost looks like a circle. That is, we can
draw circles by drawing polygons with very short sides and many corners.

Exercise 39
Test the following programs:
repeat 360 [fd 1 rt 1]
repeat 180 [fd 3 rt 2]
repeat 360 [fd 2 rt 1]
repeat 360 [fd 3.5 rt 1]

3.5 means 3 and a half steps.

24

Exercise 40

(a) How would you draw a very small circle? Write a program for that.

(b) How would you draw a big circle? Write a program for that.

Exercise 41
Try to draw the following half circles. You can choose the sizes by yourself:

(a) (b)

Exercise 42
Use what you have just learned to draw the following images. You can choose the
size of the circle by yourself:

200 200

200

200

(a)

200 200
200

(b)

Freestyle Drawing

Draw a 7-gon by:
repeat 7 [fd 100 rt 360/7]

Then turn the turtle by 10° using the command
rt 10

25

Repeat both programs a couple of times and look at the resulting image. After each
7-gon we turn the turtle by 10° with rt 10. If we want to get back to our starting
position, then we have to repeat it

360°
10° = 36

times. Therefore, we want to look at what the following program produces:
repeat 36 [repeat 7 [fd 100 rt 360/7] rt 10]

Exercise 43

Draw a regular polygon with 12 corners and sides of length 70. Turn it 18 times
until you have reached your starting position.

Remark: You can first write a program to draw the 12-gon with sides of length 70
and label it POLYGON12, for example. Afterwards, you only need to complete the
following program:
repeat 18 [POLYGON12 rt ...]

Exercise 44
Invent an exercise similar to Exercise 43. Write a program that solves your exercise.

Colors

To draw beautiful images, we need various colors. The turtle can draw not only black
lines, but also lines of many different colors. Each color is assigned a number. The
following table contains a list of all possible colors:

0 5 9 13
1 6 10 14
2 7 11 15
3 8 12 16
4

26

Using the command

setpencolor X

Command
to change
the color

Number of the
desired color

the turtle changes the current color to the color given by the number X. We can use a
shorter version of the same command: setpc.

Using colors, we can draw amazing patterns like for instance the pattern that is produced
by the following program. First we create two named programs that draw circles of
different sizes.
to CIRCLE3
repeat 360 [fd 3 rt 1]
end

to CIRCLE1
repeat 360 [fd 1 rt 1]
end

Now we use these circles to design patterns similar to the ones we have already seen:
to PATTERN3
repeat 36 [CIRCLE3 rt 10]
end

to PATTERN1
repeat 18 [CIRCLE1 rt 20]
end

Let us try the same thing using colors:
setpc 2
PATTERN3 rt 2
setpc 3
PATTERN3 rt 2

setpc 4
PATTERN3 rt 2
setpc 5
PATTERN3 rt 2

27

setpc 6
PATTERN1 rt 2
setpc 15
PATTERN1 rt 2

setpc 8
PATTERN1 rt 2
setpc 9
PATTERN1 rt 2

Feel free to continue and add even more patterns. Or you can come up with a totally
new pattern.

Exercise 45
Use the program PATTERN3 to draw the corresponding image with the orange color.
Then use the command setpc 7 to choose the color white. What happens if you
execute PATTERN3 again?

Exercise 46
Draw the following image. The turtle starts at the common point of both circles
(their intersection point).

Exercise 47
Write a program that draws the following image. You can choose the size of the
circle by yourself.

200

28

5 Programs with Parameters

In Lesson 3, we have learned how to assign names to programs and how to use these
names to call the programs and draw the desired images. Then we have learned in
Lesson 4 how to draw regular polygons. It is very tedious that we have to write a new
program for every polygon with a different number of corners.

Let us look at the following three programs:
repeat 7 [fd 50 rt 360/7]
repeat 12 [fd 50 rt 360/12]
repeat 18 [fd 50 rt 360/18]

All three programs are very similar and only differ in the yellow numbers 7 , 12 and 18 .
Those numbers define the number of corners of the polygon. In the following, we want
to write a program that works for any polygon, no matter how many corners it has:
to POLYGON :CORNER
repeat :CORNER [fd 50 rt 360/:CORNER]
end

What did we do? Wherever the number of corners of the polygon appears, we wrote the
name :CORNER instead of the actual number. In order for the computer to know that we
want to be able to choose the number of corners freely, we have to write :CORNER also
after the name of the program.

By typing the command POLYGON 12 into the command line, the computer replaces the
name :CORNER by the number 12 everywhere it appears:

repeat :CORNER︸ ︷︷ ︸
12

[fd 50 rt 360/:CORNER︸ ︷︷ ︸
12

]

Try it out:
POLYGON 3
POLYGON 4
POLYGON 5
POLYGON 6

29

We call :CORNER a parameter. In the example above, the values 3, 4, 5 and 6 are called
values of the parameter :CORNER. The computer knows that this is a parameter
because of the :. That is why, wherever a parameter appears, it has to have a : in front
of the name.

Exercise 48
Each of the following programs draws a square of a different size.
repeat 4 [fd 100 rt 90]
repeat 4 [fd 50 rt 90]
repeat 4 [fd 200 rt 90]

The yellow numbers 100, 50, 200 can be seen as values of a parameter, which sets
the size of the square. Write a program with a parameter :SIZE to draw squares of
any size:
to SQUARE :SIZE
...
end

Exercise 49
The following programs draw circles of different sizes:
repeat 360 [fd 1 rt 1]
repeat 360 [fd 12 rt 1]
repeat 360 [fd 3 rt 1]

Write a program with a parameter to draw circles of any size. Try out your program
using 1, 2, 3, 4 and 5 as different parameter values. You can choose the name of the
parameter by yourself, but do not forget that there has to be a colon in front of the
parameter.

Exercise 50

Do you still remember how to draw thick lines (Exercise 28)? Write a program with
a parameter that can draw thick lines of any length.

Hint: You can start off by writing programs that draw lines of length 100 and length
50 to figure out what the parameter of your program should be.

30

Exercise 51
Write a program with a parameter that draws regular triangles of any size. Use your
program to draw triangles of sizes

20, 40, 60, 80, 100, 120, 140, 160 and 180

one after another. What do you get?

Exercise 52
Now we would like to draw squares of size 40, one next to another. Write a program
SQUARES with a parameter :AM. The parameter :AM determines how many squares
will be drawn. Hence, when we call SQUARES 6, the turtle draws the following image:

40

40

This image will be drawn after the call of SQUARES 3:

40

40

Exercise 53
Write a program that draws the following image consiting from 4 squares. The size
of the square is determined by a parameter.

Exercise 54
Write a program with a parameter that can draw regular 6-gons of any size. Try
out your program by drawing regular 6-gons of the sizes 40, 60 and 80.

31

Exercise 55
Write a program with a parameter :X that can draw houses of the following type:

X

X

X

Programs with Multiple Parameters

A program can have more than one parameter. When we are drawing polygons, for
example, our program might have a parameter :CORNER , for the number of corners, and
a parameter :SIZE , for the length of the sides.

In the following programs, the parameter :CORNER is marked yellow and the parameter
:SIZE is marked green:
repeat 13 [fd 100 rt 360/13]
repeat 3 [fd 300 rt 360/3]
repeat 17 [fd 10 rt 360/17]
repeat 60 [fd 3 rt 360/60]

We can then write a program with two parameters that can draw any regular polygon:
to POLY :CORNER :SIZE
repeat :CORNER [fd :SIZE rt 360/:CORNER]
end

Test the program POLY using the following calls:
POLY 12 60
POLY 12 45
POLY 8 30
POLY 9 30
POLY 7 31
POLY 11 50

32

Exercise 56
Write a program with two parameters that can draw the following image. The size
of the circle as well as the size of the triangle should be freely choosable.

Exercise 57
The program
fd 100 rt 90 fd 200 rt 90 fd 100 rt 90 fd 200

draws a rectangle of height 100 and width 200. Copy the program to see whether it
really works. Write another program with two parameters that can draw rectangles
of any height and width.

Exercise 58
The following program:
repeat 2 [rt 45 fd 200 rt 45 fd 100 rt 90]

draws a parallelogram:

Write a program with two parameters that can draw this kind of parallelograms
with sides of any size.

33

Exercise 59
Draw a flower as follows. Start off with a circle using
POLY 360 2

then turn the turtle a little bit to the right
rt 20

and draw another circle
POLY 360 2

Repeat this multiple times: rt 20 POLY 360 2 rt 20 POLY 360 2 . . .

When the flower is finished, the turtle should be positioned at its initial position.
The turtle will then have drawn 18 circles having turned by 20° between each of
them. In total the turtle will have turned by 18 · 20° = 360°.

We can write the whole program as:
repeat 18 [POLY 360 2 rt 20]

Try it out.

(a) You can also draw a flower with 10 or even 20 petals (circles). How would you
do that? Write a program and try it out.

(b) Can you write a program with a parameter that draws a flower with any number
of petals (circles)?

(c) Can you write a program that uses the following values as parameters:

• the number of petals (circles) and

• the size of the circles?

Exercise 60
Write a program to draw any rectangle with any color:

A

B

This means that not only the height A and the width B but also the color should
be freely choosable.

34

6 Drawing Flowers and Passing
Parameters to Subprograms

A leaf

A

B

can be viewed as two arcs A and B that are glued together. We can use the following
program to draw an arc:
repeat 120 [fd 2 rt 1]

Try it out.

We note that the program is very similar to the program for drawing a circle. Instead of
making 360 small steps with small turns in between, however, we only repeat 120 times
[fd 2 rt 1] and therefore only draw a third of a circle (360°

3 = 120°).

The question that remains is how much we have to turn the turtle before we can start
drawing the second arc B, which will form the lower part of the leaf. Let us look at the
following illustration:

A

B

120◦

60◦
60◦

120◦

If we want to reach our initial position after having drawn the whole leaf, we will have to
turn the turtle by 360◦ in total. While drawing part A, we turn the turtle by 120◦ and
while drawing part B, we turn it by another 120◦. Therefore, the remaining angle is

360◦ − 120◦ − 120◦ = 120◦.

35

We split 120◦ equally between the two rotations at both spikes of the leaf:

120◦

2 = 60◦.

Finally, we get the following program:
repeat 120 [fd 2 rt 1]
rt 60
repeat 120 [fd 2 rt 1]
rt 60

or even simpler:
repeat 2 [repeat 120 [fd 2 rt 1] rt 60]

Try it out.

Now, we would like to be able to draw narrower leaves (where the parts A and B are
shorter) or wider leaves (where the parts A and B are longer).

A

B

ANGLE=120◦

A

B

ANGLE=135◦

We again use a program with a parameter for this. Let us call the parameter :ANGLE.
The angle to turn by at the spike of the leaf can then be calculated as follows:

Before starting with part B of the leaf, we must have completed half of the total turn,
that is, 360°

2 = 180°. The angle we have to turn at the spike of the leaf is then given by

180◦ − :ANGLE.

We can now write our program in the editor:
to LEAF :ANGLE
repeat 2 [repeat :ANGLE [fd 2 rt 1] rt 180-:ANGLE]
end

36

Try the program by calling it from the command line as follows:
LEAF 20
LEAF 40
LEAF 60
LEAF 80
LEAF 100

What happens?

Exercise 61
Freestyle drawing.

Start off by drawing a flower using the following program:
LEAF 100
rt 20
LEAF 100
rt 20
LEAF 100
....

How many times do you have to repeat the commands LEAF and rt 20 to completely
draw the flower?

Write the program for the flower in just one line by using an appropriate repeat com-
mand. (Keep in mind that all turns rt in between the leaves have to add up to
360◦).

37

Exercise 62
The command fd 2 in the program LEAF defines the size of the circle, out of which
we cut the arc. We can replace the value 2 by a parameter called :SIZE. Write a
program
LEAVES :ANGLE :SIZE

with the two parameters :ANGLE and :SIZE, so that we can control both the length
and the size of the leaves. Try out your program using the following program calls:
LEAVES 100 1
LEAVES 100 1.5
rt 100
LEAVES 80 2
LEAVES 80 2.5

Then turn the turtle by 80° to the right and repeat the commands above.

Exercise 63
Think about other patterns you can draw.

38

7 Programming Animations

Do you know how to make animated movies? It works exactly the same as in the flipbook.
First you draw a few pictures, which are each only a little bit different one from another.
In the following picture for example, the boy on the kickboard always moves a little bit
from one picture to next picture:

When you put the pictures one on top of another and scroll them quickly with your
thumb, you get the feeling, that the boy really moves from the left to the right. Moving
pictures are called Animations.

In this Lesson we will learn, how we can program animations with the help of the turtle.

How to Draw a Square that Leaves Traces

In our first animation, we choose a figure, which is not too complicated and which we
know already for a long time: We will move a square from left to right.

We know the program, that draws a square, already from before:
to SQUARE100
repeat 4 [fd 100 rt 90]
end

Once the square is drawn, we move the turtle a bit to the right and we draw another
square again. We repeat this a couple of times.

39

In the following program, we draw 120 of these squares:
to SQUAREMOVE
repeat 120 [SQUARE100 rt 90 fd 4 lt 90]
end

Exercise 64
Write the program SQUARE100 and SQUAREMOVE in the Editor and try SQUAREMOVE
out. What will be drawn?

You can see, that the traces of all squares are drawn. But for our animation, we would
like to see in each step only the last square and we want to erase the previous traces.

Exercise 65
Make the square move from the bottom to the top instead of from the left to the
right.

Exercise 66
Write a program for a line segment of the length 20. Use this program in order to
move the line segment clockwise around the lower end:

20◦

40

How to Draw a Square and How to Erase it Again

To cover the tracks, we have to learn how to erase images, which we have just drawn.
For this purpose, the turtle has to use an eraser instead of a pen. The turtle changes
from the pen mode to the erasing mode with the new command penerase or the shorter
version pe.

Exercise 67

Think about what the program SQUARE100 pe SQUARE100 does without using the
computer.

To make the turtle draw again, we need the new command: penpaint or the shorter
version ppt. We can directly apply the new command in our program of Exercise 67.

The program now looks like this:
SQUARE100 pe SQUARE100 ppt

Exercise 68

Try out the program above. What will happen? Can you explain it?

How to Make a Square Wait a Bit

As you have surely realized in Exercise 68, the square is erased immediately after it has
been drawn. We do not even notice that a square has been drawn. Therefore, before we
erase the square, we have to make the computer wait a bit.

We can do this as follows:

wait 4

Wait command Wait time

Exercise 69
Try out the program:
SQUARE100 wait 4 pe SQUARE100 ppt

41

How to Move a Square From Left to Right

Now we can include the commands for waiting and erasing the square into our program
SQUAREMOVE:
to SQUAREMOVE
repeat 120 [SQUARE100 wait 4 pe SQUARE100 rt 90 fd 4 lt 90 ppt]
end

Try it out. If the turtle bothers you during the animation, you can start the program with
the command hideturtle (or shorter: ht), which makes the turtle disappear. You will
realize that the animation gets faster. End the program with the command showturtle
(or shorter: st) right before the command end, which makes the turtle visible again.

Exercise 70
Move a square of size 50 × 50 upwards.

Exercise 71
Change the program SQUAREMOVE so, that the square will move twice as fast to the
right as before.

Exercise 72
Are you able to change the program SQUAREMOVE in such a way that the square will
move half as fast to the right?

Exercise 73
Change the program SQUAREMOVE so, that the square moves from the right to the
left instead.

Exercise 74
First, try to find out what the following program does and then check your assumption
by executing the program:
to SQUAREMOVE1
ht
repeat 50 [SQUARE100 wait 5 pe SQUARE100 fd 3 rt 90 fd 3 lt 90 ppt]
SQUARE100
st
end

42

Exercise 75
First, think about what the following program does. Then check if your assumption
was right with the computer.
to CIRCLES
ht
repeat 360 [SQUARE100 wait 4 pe SQUARE100 fd 5 rt 1 ppt]
SQUARE100
st
end

Exercise 76
Modify the program CIRCLES in order to make the square turn four times faster.

Exercise 77
What does the following program do?
repeat 6 [CIRCLES]

Exercise 78
Look at the following program
to EARTH
repeat 45 [fd 16 rt 8]
end

and use it to draw an animation, in which the Earth turns around the Sun. Use
your imagination to represent the Sun.

Exercise 79

Turn a square clockwise around its bottom left corner. You can choose the size of
the square:

43

Exercise 80
Now turn a square clockwise around its top right corner:

If you already know about Parameters from Lesson 5, you can work on the next exercises.

Exercise 81
Write a program with two Parameters to move a square from left to right. One
parameter determines the length of the square, the other parameter is for the speed
of the square.

Exercise 82

(a) Make a square walk along the path shown bellow, which consists of four half
circles. The size of the square should be given by a parameter.

(b) Now we also want to draw the path along which the square moves.

(c) Are you able to extend the program in (b) in such a way, that the number of
half circles can be given by a parameter?

44

My Notes

45

Overview of commands

fd 100 take 100 steps forward

bk 50 take 50 steps backwards

cs delete all and start again

rt 90 rotate 90 degrees to the right

lt 90 rotate 90 degrees to the left

repeat 4 [...] the program in [...] is four times repeated

pu the turtle enters the walking mode

pd the turtle returns to pen mode

setpc 3 changes the pen color to the color 3

to NAME creates a program with a name

to NAME :PARAMETER creates a program with a name and a parameter

end all programs with a name end with this command

pe the turtle enters the eraser mode

ppt the turtle returns to pen mode from eraser mode

wait 5 makes the turtle wait 5 units of time

46

Programming in LOGO

Chair of Information Technology and Education
ETH Zurich, CAB F 15.1

Universitätstrasse 6
CH-8092 Zurich

Switzerland

www.ite.ethz.ch
www.abz.inf.ethz.ch

